Principal Component Analysis
Tags: coursera-machine-learning, dimensionality-reduction, PCA
week 8 延了 一週 因為上禮拜的 machine learning 課程太過瘋狂 XDDD
好~ GOGO!
Principal Component Analysis (PCA): problem formulation
PCA: problem formulation
-
Reduce from 2-dimension to 1-dimension: Find a direction (a vector) onto which to project the data so as to minimize the projection error.
-
Reduce from n-dimension to k-dimension: Find k vectors onto which to project the data, so as to minimize the projection error.
不得不說實話,還是大神教的好 ! 真的棒啊
PCA is not linear regression
Principal Component Analysis (PCA): Algorithm
Data preprocessing
Applying PCA:Reconstruction from Compressed Representation
Reconstuction:
Applying PCA:Choosing the Number of Principal Components
Choosing k
variance 還是會保持住!!!
大神自己用octave 的時候 也直接用 svd funcs 來做 XDD
Advice for Applying PCA
大神教到這邊的時候,我突然想到一個問題,在 python sklearn 的套件下,我們要給
n_components
的數值,疑問就來了~ 那要如何決定要幾個?
速度查,看到這篇 好棒棒的文章
Supervised learning speedup
用 PCA 來做 數據壓縮!!! (我看 書 上寫的名詞 XDDD)
Bad use of PCA: To prevent overfitting
PCA is sometimes used where it shouldn’t be
Quiz