less than 1 minute read

Tags: , ,

week 8 延了 一週 因為上禮拜的 machine learning 課程太過瘋狂 XDDD
好~ GOGO!

Principal Component Analysis (PCA): problem formulation

PCA: problem formulation

Imgur

  • Reduce from 2-dimension to 1-dimension: Find a direction (a vector) onto which to project the data so as to minimize the projection error.

  • Reduce from n-dimension to k-dimension: Find k vectors onto which to project the data, so as to minimize the projection error.

不得不說實話,還是大神教的好 ! 真的棒啊 :heart:

PCA is not linear regression

Imgur Imgur

Principal Component Analysis (PCA): Algorithm

Data preprocessing

Imgur

Imgur

Imgur

Applying PCA:Reconstruction from Compressed Representation

Reconstuction:

Imgur

Imgur

Applying PCA:Choosing the Number of Principal Components

Choosing k

variance 還是會保持住!!!

Imgur

大神自己用octave 的時候 也直接用 svd funcs 來做 XDD

Imgur

Imgur

Advice for Applying PCA

大神教到這邊的時候,我突然想到一個問題,在 python sklearn 的套件下,我們要給 n_components 的數值,疑問就來了~ 那要如何決定要幾個?
速度查,看到這篇 好棒棒的文章 :heart:

Supervised learning speedup

用 PCA 來做 數據壓縮!!! (我看 上寫的名詞 XDDD)

結果無意間發現這 超級超級棒棒的資源, 資源源源

Imgur

Imgur

Bad use of PCA: To prevent overfitting

Imgur

PCA is sometimes used where it shouldn’t be

Imgur

Quiz

Imgur