less than 1 minute read

Tags: ,

Kernels I

Imgur

有沒有更好的方式來算 features f1, f2, f3 …

Imgur

Imgur

Imgur

Kernels II

大神 takeaway: 不要自己刻 SVM!! 請拿好心叔叔伯伯姐姐阿姨提供的 package 來使用~

  • Chossing the landmarks

Imgur

Imgur

  • SVM parameters:

    • C (= 1 / λ).
      • Large C: Lower bias, high variance.
      • Small C: Higher bias, low variance.
    • σ^2
      • Large σ^2: Features fi vary more smoothly.
        Hiner bias, lower variance.

      • Small σ^2: Features fi vary less smoothly.
        Lower bias, highter variance.

    Imgur

    • EX:
      Suppose you train an SVM and find it overfits your training data. Which of these would be a reasonable next step?

      • Decrease C
      • Increase σ^2