kernels
Tags: coursera-machine-learning, SVM
Kernels I
有沒有更好的方式來算 features f1, f2, f3 …
Kernels II
大神 takeaway: 不要自己刻 SVM!! 請拿好心叔叔伯伯姐姐阿姨提供的 package 來使用~
- Chossing the landmarks
-
SVM parameters:
- C (= 1 / λ).
- Large C: Lower bias, high variance.
- Small C: Higher bias, low variance.
- σ^2
-
Large σ^2: Features fi vary more smoothly.
Hiner bias, lower variance. -
Small σ^2: Features fi vary less smoothly.
Lower bias, highter variance.
-
-
EX:
Suppose you train an SVM and find it overfits your training data. Which of these would be a reasonable next step?- Decrease C
- Increase σ^2
- C (= 1 / λ).