aiacademy: 機器學習 intro
Tags: aiacademy, machine-learning
只 PO 不怎麼熟悉的主題
ML 1 (觀念): https://www.youtube.com/playlist?list=PL1f_B9coMEeB9vVZLAVVY99Q6jUyMxxZ- ML 2 (實作): https://www.youtube.com/playlist?list=PL1f_B9coMEeAq0pcCCMx0UoxRkQ392hy2 ML 3 (觀念 & 實作): https://www.youtube.com/playlist?list=PL1f_B9coMEeB0uxQwlKLGGyDpI_Xs8iCY ML 4 (觀念 & 實作 ): https://www.youtube.com/playlist?list=PL1f_B9coMEeCvbetNGYmW7fWUBSo0-D_i ML 5 (觀念 & 實作 ): https://www.youtube.com/playlist?list=PL1f_B9coMEeDnlocZvO4vREgupj3TWhh5 ML 6 (觀念 & 實作 ): https://www.youtube.com/playlist?list=PL1f_B9coMEeDPl3dZ_ZmoDB1A2gjPa3hg ML 7 (觀念 & 實作 ): https://www.youtube.com/playlist?list=PL1f_B9coMEeDMRTE71laJp3BYe9dOE_Ak
Gradient Descent VS. Stochastic Gradient Descent
- sgd:
- 每次 只看一筆資料,走最好的方向
-
GD VS. SGD:
-
Steps:
- GD: fewer steps
- SGD: more steps
-
Computation of each step
- GD: look through all the training instances
- SGD: look onlu one training instance
-
-
Pros and Cons of SGD:
- Pros:
-
When the training data is large with some (near) redundant instances, SGD is usually much faster to converge than GD
-
Supports online learning: model 比較能反映出 features 和 target variables 相對應得關係
-
Sometimes can pass local minimum
-
-
Cons:
- Tends to bouncing around minimum
- Pros:
Close form solution
庫ㄟ! 第一次聽到 Close form solution
-
當problem 是 multiple linear regerssion的時候算 θ:
- 可用 close form solution:
Close form solution VS. Gradient Descent
-
If the number of features is small, close form solution is probably acceptable
-
However, if the number of features is large, using gradient descent is more efficient
-
Moreove, gradient descent is capable of solving more complex optimization problem
-
in many cases,
∂J(θ)/∂θ = 0
has no closed-from solution…. , But we can still apply gradient descent