less than 1 minute read

Tags: , ,

Principlal Component analysis (PCA)

from sklean.decomposition import PCA

t-SEN

K-means

Machine Learning - Summary

What we have learned

  • We mostly discussed supervised learning

    • Linear regression
    • Logistic regression
    • SVM
    • KNN
    • Decision Trees
    • random forest
    • AdaBoost
    • Gradient Boosting
    • etc.
  • We also discussed a few unsupervised learning methods

    • PCA
    • t-SNE
    • K-means
    • hierachical clustering

What was not covered (but probably important if you want to dive deeper in AI/ML)

  • Deep Learning
  • Reinforcement learning
  • Bayesian learning
  • Numerical optimization
  • Searching
  • Knowledge representataion

Imgur

:smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile::smile:

Imgur

:heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart::heart:

Imgur