aiacademy: 自然語言處理 NLP 老師來拉~!!!
Conversational Al
-
Language Empowering INtelligent Assistants
- from 2011 (Apple)
- Google Now (2012)
- 被動把方式給你
- Google Assistant (2016)
- Microsoft Cortana (2014)
- Amazon Alex/Echo (2014)
- 倒數計時應用
- 購物功能
- echo 對話
- 下單
- Google Hmoe (2016)
- Appple HomePod (2017)
- Facebook Portal (2019)
- 吃 amazon 的 data 當 backend
Why Natural Language?
- Total Population
- 7.59B
- Internet Users
- 4.02B
- Active Social Media Users
- 3.2B
- Mobile Users
- 5.14B
- 用手機的人口,竟然比上網人口還多ㄚㄚㄚㄚ!!! 看看家裡的長輩~ XD
- Active Mobile Social Users
- 2.96B
最自然的操作方式,就是用講的!
Why and When We Need?
- Social Chit-Chat
- talk like a human
- Task-Oriented Dialogues
- information consumption
- Task completion
- Decsiion support
Intelligent Assistants
- 主要幾乎都是,task-oriented dialogues
APP –> Bot
- A Bot is responsible for a “single” domain, similar to an app.
User 可以自己主動開始對話,而不會依照開發者的 logic 進行!
Two Branches of Conversational AI
- Chit-Chat
- Seq2sqe models
- Seq2seq with conversation contexts
-
Knowledge-grounded seq2seq models
- 小冰
- Task-Oriented
- Single-domain, system-initiative
- Multi-domain, contextural, mixed-initiative
- End-to-end learning, massively multi-domsin
Task-Oriented
Task-Oriented Dialogue System (Young, 2000)
- Domain Identification
- Intent Detection
- Slot Filling
- slot tagging
- Variations:
- RNNs with LSTM cells
- Input, sliding window of n-grams
- Bi-directional LSTMs
- encoder-decoder
- attention-based encode-decoder
- Variations:
- Multi-Task Slot Tagging
- Semi-Supervised Slot Tagging
- slot tagging
Joint Semantic Frame Parsing
Contextual Language Understanding
End-to-End Memory NetWorks
Dialogue State Tracking (DST)
Multi-Domain Dialogue State Tracking
Dialog State Tracking Challenge (DSTC)
E2E Task-Completion Bot (TC-Bot)
Issues in NLG
- Issue
- NLG tends to generate shorter sentences
- NlG may generate grammatically-incorrect sentences
- Soluttion
- Generate word patterns
Conversational AI
- Issue 1: Blandness Problem
- Issue 2: Response Inconsistency
- Issue 3: Dialouge-Level Optimization via RL
- Issue 4: No Grounding
MMI for Response Diversity
High level Intention learning
Conversational Question Answering
- QuAC
- http://quac.ai/
Understanding RCT
GPT (Generative Pre-Training)
Challenge Summary
-
The human-machine interfcae is a hot topic butseveral ocmponents must be integrated
- Most state-of-the-aret techologies area based on Dnn
- REquires huge amounts of labed data
- Serveral frameworrks/models are avilable
- Fast domain adaptiona with scares datra _re-use of reles/knoledfe
- Handing resoning and presonalization
- Data collection adn danaysis from un-sructured dat
- Complec-casecde