Classification and Representation
7 月第一天!!! oh~~ Summer~~ GOGO!
你有多自律,就有多自由。
Classification : article
Classification:
- EX:
- Email: Spam / Not Spam?
- Online Transactions: Fraudulent (Yes / No)?
- Tumor: Malignant / Benign?
# binary classification problem y ⊂ {0, 1} 0: "Negative Class" (e.g., benign tumor) 1: "Positive Class" (e.g., malignant tumor) # multiclass classification problem y ⊂ {0, 1, 2, 3, ...}
-
使用 linear regression 來做 classification problems 通常不優!
從大神的圖可以看到,如果再加一數值進到資料集裡面,曲線又會再做更便兒~ -
讓我們再想想
Classdification: y = 0 or 1 hθ(x) can be > 1 or < 0
Logistic Regression is actually a classification algorithm:
Logistic Regression: 0 ≤ hθ(x) ≤ 1
Hypothesis Representation : article
Logistic Regression Model:
- Want 0 ≤ hθ(x) ≤ 1
hθ(x) = g ( θ^T * x )
-
Sigmoid function (Logistic function):
g(z) = 1 / 1 + e^-z
We Got:
-
hθ(x) = 1 / 1 + e^-(θ^T * x)
Interpretation of Hypothesis Output:
hθ(x) = estimated probability that y = 1 on input x
- EX:
| x0 | | 1 | if x = | x1 | = | tumorSize | hθ(x) = 0.7
- Tell patient that 70 % chance of tumor being malignant
-
hθ(x) = P(y=1|x;θ), y = 0 or 1 “Probability that y = 1, given x, parameterized by θ”
P(y=0|x;θ) + P(y=1|x;θ) = 1 P(y=0|x;θ) = 1 - P(y=1|x;θ)
Decision Boundary : article
Logistic regression:
hθ(x) = g ( θ^T * x )
g(z) = 1 / 1 + e^-z
- y = 1
(θ^T * x) ≥ 0
- y = 0
(θ^T * x) < 0
Decision Boundary:
Non-linear decision boundaries:
漸漸回到手寫筆記王的港決了!!
圖像表示,代表 non-linear decision boundaries 有各式各種可能(形狀)